By Topic

Development of the Adjoint Model of a Canopy Radiative Transfer Model for Sensitivity Study and Inversion of Leaf Area Index

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Qin ; Inst. of Geogr. Sci. & Natural Resources Res., Chinese Acad. of Sci., Beijing ; Shunlin Liang ; Xiaowen Li ; Jindi Wang

Many canopy reflectance models have been developed in the last decades and used for estimating land surface biogeophysical variables, such as leaf area index (LAI), from satellite observations through optimization procedures. In most studies, the derivative information of the canopy reflectance model has not been used effectively, which limits this approach for regional and global applications. The final solutions are often converged to the local minima. To address these issues, the adjoint model of a canopy radiative transfer model is developed in this study through the automatic differentiation technique. The developed adjoint model is used for sensitivity study, and a combination of the adjoint model with the trust region global optimization method is performed to retrieve LAI from the Enhanced Thematic Mapper Plus (ETM+). This study demonstrates that this method can be reliably used for inverting LAI efficiently and is suitable for global applications.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 7 )