Cart (Loading....) | Create Account
Close category search window
 

A Robust State Space Model for the Characterization of Extended Returns in Radar Target Signatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naishadham, K. ; Charles Stark Draper Lab., Cambridge, MA ; Piou, J.E.

Analysis of radar scattering from targets with curved boundaries, such as objects comprising cylindrical and conical shapes, is important to many aerospace applications. The radar return is composed of a well-characterized physical optics response in the illuminated region where the transmitter and receiver are not shadowed by the object, and a combination of modal responses (e.g., creeping waves and edge-diffracted fields) in the shadow region. The modal responses have longer down-range than scattering centers located on the object, and therefore, produce extended (or off-body) returns in ISAR images, which are not well-understood. However, these returns are strongly dependent on local features of the object, and thus contain valuable information with regard to the target's geometrical and physical composition. Multiple reflections from illuminated facets, as well as multiply diffracted waves, can also add coherently in the direction of the receiver and produce such returns. This paper applies a robust, coherent-processing system identification technique, originally developed for radar sensor fusion, to estimate amplitude and phase of the scatterers that characterize extended returns in the target signature. Examples are presented that highlight the extraction of creeping waves using measured data on a cone-sphere.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:56 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.