By Topic

Efficient Analysis of Phased Arrays of Microstrip Patches Using a Hybrid Generalized Forward Backward Method/Green's Function Technique With a DFT Based Acceleration Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bakir, O. ; Dept. of Electr. & Comput. Eng., Univ. of Michigan, Ann Arbor, MI ; Civi, O.A. ; Ertürk, V.B. ; Hsi-Tseng Chou

A hybrid method based on the combination of generalized forward backward method (GFBM) and Green's function for the grounded dielectric slab together with the acceleration of the combination via a discrete Fourier transform (DFT) based algorithm is developed for the efficient and accurate analysis of electromagnetic radiation/scattering from electrically large, irregularly contoured two-dimensional arrays consisting of finite number of probe-fed microstrip patches. In this method, unknown current coefficients corresponding to a single patch are first solved by a conventional Galerkin type hybrid method of moments (MoM)/Green's function technique that uses the grounded dielectric slab's Green's function. Because the current distribution on the microstrip patch can be expanded using an arbitrary number of subsectional basis functions, the patch can have any shape. The solution for the array currents is then found through GFBM, where it sweeps the current computation element by element. The computational complexity of this method, which is originally ( being the total number of unknowns) for each iteration, is reduced to using a DFT based acceleration algorithm making use of the fact that array elements are identical and the array is periodic. Numerical results in the form of array current distribution are given for various sized arrays of probe-fed microstrip patches with elliptical and/or circular boundaries, and are compared with the conventional MoM results to illustrate the efficiency and accuracy of the method.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:56 ,  Issue: 6 )