By Topic

Harmonic Balance Nonlinear Identification of a Capacitive Dual-Backplate MEMS Microphone

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jian Liu ; Interdiscipl. Microsyst. Group, Univ. of Florida, Gainesville, FL ; David T. Martin ; Toshikazu Nishida ; Louis N. Cattafesta
more authors

This paper describes the application of a nonlinear identification method to extract model parameters from the steady-state response of a capacitive dual-backplate microelectromechanical systems microphone. The microphone is modeled as a single-degree-of-freedom second-order system with both electrostatic and mechanical nonlinearities. A harmonic balance approach is applied to the nonlinear governing equation to obtain a set of algebraic equations that relate the unknown system parameters to the steady-state response of the microphone. Numerical simulations of the governing equation are also performed, using theoretical system parameters, to validate the accuracy of the harmonic balance solution for a weakly nonlinear microphone system with low damping. Finally, the microphone is experimentally characterized by extracting the system parameters from the response amplitude and phase relationships of the experimental data.

Published in:

Journal of Microelectromechanical Systems  (Volume:17 ,  Issue: 3 )