By Topic

Optical Signal Processing Using Tunable Delay Elements Based on Slow Light

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Willner, A.E. ; Dept. of Electr. Eng. - Syst., Univ. of Southern California, Los Angeles, CA ; Bo Zhang ; Lin Zhang ; Lianshan Yan
more authors

Tunable optical delay lines have many applications for high-performance optical switching and signal processing. Slow light has emerged as an enabling technology for achieving continuously tunable optical delays. Delay reconfigurability opens up a whole new field of nonlinear signal processing using slow light. In this paper, the authors review recent advances in slow-light-based optical signal processing, with a focus on the data fidelity after traversing the slow light elements. The concept of slow-light-induced data pattern dependence is introduced and is shown to be the main signal degrading effect. We then propose and experimentally demonstrate phase-preserving slow light by delaying 10 Gb/s differential phase-shift keying (DPSK) signals with reduced DPSK pattern dependence. Spectrally efficient slow light using advanced multilevel phase-modulated formats is further described. With this technique, doubled bit-rate signals can be transmitted through a bandwidth-limited slow light element. We finally show several novel slow-light-based signal processing modules. Unique features such as multichannel operation, variable bit-rate capability, and simultaneous multiple functions are highlighted.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 3 )