By Topic

The Heterogeneous Systems Integration Design and Implementation for Lane Keeping on a Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shinq-Jen Wu ; Dept. of Electr. Eng., Da-Yeh Univ., Changhua ; Hsin-Han Chiang ; Jau-Woei Perng ; Chao-Jung Chen
more authors

In this paper, an intelligent automated lane-keeping system is proposed and implemented on our vehicle platform, i.e., TAIWAN i TS-1. This system challenges the online integrating heterogeneous systems such as a real-time vision system, a lateral controller, in-vehicle sensors, and a steering wheel actuating motor. The implemented vision system detects the lane markings ahead of the vehicle, regardless of the varieties in road appearance, and determines the desired trajectory based on the relative positions of the vehicle with respect to the center of the road. To achieve more humanlike driving behavior such as smooth turning, particularly at high levels of speed, a fuzzy gain scheduling (FGS) strategy is introduced to compensate for the feedback controller for appropriately adapting to the SW command. Instead of manual tuning by trial and error, the methodology of FGS is designed to ensure that the closed-loop system can satisfy the crossover model principle. The proposed integrated system is examined on the standard testing road at the Automotive Research and Testing Center (ARTC)1 and extra-urban highways.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:9 ,  Issue: 2 )