By Topic

A fast method for image noise estimation using Laplacian operator and adaptive edge detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shen-Chuan Tai ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; Shih-Ming Yang

We present a simple and fast algorithm for image noise estimation. The input image is assumed to be corrupted by additive zero mean Gaussian noise. To exclude structures or details from contributing to the noise variance estimation, a simple edge detection algorithm using first-order gradients is applied first. Then a Laplacian operator followed by an averaging over the whole image will provide very accurate noise variance estimation. There is only one parameter which is self-determined and adaptive to the image contents. Simulation results show that the proposed algorithm performs well for different types of images over a large range of noise variances. Performance comparisons against other approaches are also provided.

Published in:

Communications, Control and Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium on

Date of Conference:

12-14 March 2008