By Topic

A Geometric Approach to the Theory of Evidence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fabio Cuzzolin ; Inf. et en Autom., Inst. Nat. de Rech., Grenoble

In this paper, we propose a geometric approach to the theory of evidence based on convex geometric interpretations of its two key notions of belief function (b.f.) and Dempster's sum. On one side, we analyze the geometry of b.f.'s as points of a polytope in the Cartesian space called belief space, and discuss the intimate relationship between basic probability assignment and convex combination. On the other side, we study the global geometry of Dempster's rule by describing its action on those convex combinations. By proving that Dempster's sum and convex closure commute, we are able to depict the geometric structure of conditional subspaces, i.e., sets of b.f.'s conditioned by a given function b. Natural applications of these geometric methods to classical problems such as probabilistic approximation and canonical decomposition are outlined.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:38 ,  Issue: 4 )