By Topic

Design of a MEMS discretized hyperbolic paraboloid geometry ultrasonic sensor microarray

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matthew Meloche ; Dept. of Electr. & Comput. Eng., Windsor Univ., Windsor, ON ; Sazzadur Chowdhury

Design of a discretized hyperbolic paraboloid geometry beamforming array of capacitive micromachined ultrasonic transducers (CMUT) has been presented. The array can intrinsically provide a broadband constant beamwidth beamforming capability without any microelectronic signal processing. A mathematical model has been developed and verified to characterize the array response. A design methodology has been presented that enables determination of the array's physical dimensions and CMUT modeling in a straightforward manner. Developed methodology has been used to design two discretized hyperbolic paraboloid geometry beamforming CMUT arrays: one in the 2.3 MHz to 5.2 MHz frequency range and another in the 113 kHz to 167 kHz frequency range. CMUTs have been designed using a cross-verification method that involves lumped element modeling, 3D electromechanical finite element analysis (FEA), and microfabrication simulation. The developed array has the potential to be used in real-time automotive collision-avoidance applications, medical diagnostic imaging and therapeutic applications, and industrial sensing.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:55 ,  Issue: 6 )