By Topic

A Low Voltage 0.35 \mu m CMOS FrequencyDivider With the Body Injection Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng-Lyang Jang ; Dept. of Electron. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei ; Chih-Yeh Lin ; Chien-Feng Lee

This letter proposes a new CMOS injection locked frequency divider (ILFD) fabricated in a 0.35 mum CMOS process. The ILFD circuit is realized with a cross-coupled CMOS LC-tank oscillator, and the injecticon is carried out through the bodies of cross- coupled transistors. The self-oscillating ILFD is injection-locked by second-(third-) harmonic input to obtain the division order of two (three). Measurement results show that at the supply voltage of 1.5 V and at the incident power of 10 dBm, the locking range is from the incident frequency 6.94 to 8.41 GHz in the divide-by-3 mode and the operation range is from the incident frequency 4.56 to 5.59 GHz in the divide-by-2 mode.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:18 ,  Issue: 7 )