By Topic

Comparative Analysis of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Herman, P. ; Intell. Syst. Res. Centre, Univ. of Ulster, Derry ; Prasad, G. ; McGinnity, T.M. ; Coyle, D.

The quantification of the spectral content of electroencephalogram (EEG) recordings has a substantial role in clinical and scientific applications. It is of particular relevance in the analysis of event-related brain oscillatory responses. This work is focused on the identification and quantification of relevant frequency patterns in motor imagery (MI) related EEGs utilized for brain-computer interface (BCI) purposes. The main objective of the paper is to perform comparative analysis of different approaches to spectral signal representation such as power spectral density (PSD) techniques, atomic decompositions, time-frequency (t-f) energy distributions, continuous and discrete wavelet approaches, from which band power features can be extracted and used in the framework of MI classification. The emphasis is on identifying discriminative properties of the feature sets representing EEG trials recorded during imagination of either left- or right-hand movement. Feature separability is quantified in the offline study using the classification accuracy (CA) rate obtained with linear and nonlinear classifiers. PSD approaches demonstrate the most consistent robustness and effectiveness in extracting the distinctive spectral patterns for accurately discriminating between left and right MI induced EEGs. This observation is based on an analysis of data recorded from eleven subjects over two sessions of BCI experiments. In addition, generalization capabilities of the classifiers reflected in their intersession performance are discussed in the paper.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )