Cart (Loading....) | Create Account
Close category search window
 

Model-driven specification of component-based distributed real-time and embedded systems for verification of systemic QoS properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hill, James H. ; Vanderbilt Univ., Nashville, TN ; Gokhale, A.

The adage "the whole is not equal to the sum of its parts" is very appropriate in the context of verifying a range of systemic properties, such as deadlocks, correctness, and conformance to quality of service (QoS) requirements, for component-based distributed real-time and embedded (DRE) systems. For example, end-to-end worst case response time (WCRT) in component-based DRE systems is not as simple as accumulating WCRT for each individual component in the system because of inherent complexities introduced by the large solution space of possible deployment and configurations. This paper describes a novel process and tool-based artifacts that simplify the formal specification of component-based DRE systems for verification of systemic QoS properties. Our approach is based on the mathematical formalism of Timed Input/Output Automata and uses generative programming techniques for automating the verification of systemic QoS properties for component-based DRE systems.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.