By Topic

An adaptive and scalable multiprocessor system For Xilinx FPGAs using minimal sized processor cores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alexander Klimm ; Universität Karlsruhe (TH), Engesserstr. 5, 76131, Germany ; Lars Braun ; Jurgen Becker

In embedded systems, especially in multi-purpose platforms, the need for computational power can vary greatly. This depends mainly on the type of applications running on the platform as well as on limitations such as real-time constraints or the amount of data being processed. These factors can change during lifetime of the system and even during runtime. A highly adaptive computing platform is desirable, providing exactly the computational power and speed needed for any particular task at any particular time using minimal resources. This contribution discusses a highly scalable multiprocessor system composed of minimal sized processor cores. The proposed architecture is intended for computational intensive applications such as on-line routing and placement on FPGAs or applications in the cryptographic domain. While offering a lot of leeway in computational power it uses minimal resources on an FPGA, thus freeing hardware resources for applications running in parallel to the multiprocessor system.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008