By Topic

ECG segmentation in a body sensor network using Hidden Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaming Li ; Dept. of Electr. & Comput. Eng., Michigan Michigan Technol. Univ., Houghton, MI ; Jindong Tan

A novel approach for segmenting ECG signal in a body sensor network employing hidden Markov modeling (HMM) technique is presented. The parameter adaptation in traditional HMM methods is conservative and slow to respond to these beat interval changes. Inadequate and slow parameter adaptation is largely responsible for the low positive predictivity rate. To solve the problem, we introduce an active HMM parameter adaptation and ECG segmentation algorithm. Body sensor networks are used to pre-segment the raw ECG data by performing QRS detection. Instead of one single generic HMM, multiple individualized HMMs are used. Each HMM is only responsible for extracting the characteristic waveforms of the ECG signals with similar temporal features from the same group, so that the temporal parameter adaptation can be naturally achieved.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008