By Topic

Junction tree decomposition for parallel exact inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yinglong Xia ; Comput. Sci. Dept., Univ. of Southern California, Los Angeles, CA ; Prasanna, V.K.

We present a junction tree decomposition based algorithm for parallel exact inference. This is a novel parallel exact inference method for evidence propagation in an arbitrary junction tree. If multiple cliques contain evidence, the performance of any state-of-the-art parallel inference algorithm achieving logarithmic time performance is adversely affected. In this paper, we propose a new approach to overcome this problem. We decompose a junction tree into a set of chains. Cliques in each chain are partially updated after the evidence propagation. These partially updated cliques are then merged in parallel to obtain fully updated cliques. We derive the formula for merging partially updated cliques and estimate the computation workload of each step. Experiments conducted using MPI on state-of-the-art clusters showed that the proposed algorithm exhibits linear scalability and superior performance compared with other parallel inference methods.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008