By Topic

Performance adaptive UDP for high-speed bulk data transfer over dedicated links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eckart, B. ; Electr. & Comput. Eng., Tennessee Technol. Univ., Cookeville, TN ; Xubin He ; Qishi Wu

New types of networks are emerging for the purpose of transmitting large amounts of scientific data among research institutions quickly and reliably. These exotic networks are characterized by being high-bandwidth, high- latency, and free from congestion. In this environment, TCP ceases to be an appropriate protocol for reliable bulk data transfer because it fails to saturate link throughput. Of the new protocols designed to take advantage of these networks, a subclass has emerged using UDP for data transfer and TCP for control. These high-speed variants of reliable UDP, however, tend to underperform on all but high-end systems due to constraints of the CPU, network, and hard disk. It is therefore necessary to build a high-speed protocol adaptive to the performance of each system. This paper develops such a protocol, Performance Adaptive UDP (henceforth PA-UDP), which aims to dynamically and autonomously maximize performance under different systems. A mathematical model and related algorithms are proposed to describe the theoretical basis behind effective buffer and CPU management. Based on this model, we implemented a prototype under Linux and the experimental results demonstrate that PA-UDP outperforms an existing high-speed protocol on commodity hardware in terms of throughput and packet loss. PA- UDP is efficient not only for high-speed research networks but also for reliable high-performance bulk data transfer over dedicated local area networks where congestion and fairness are typically not a concern.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008