By Topic

A simple power-aware scheduling for multicore systems when running real-time applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Diana Bautista ; Department of Computer Engineering (DISCA), Universidad Politécnica de Valencia, Spain ; Julio Sahuquillo ; Houcine Hassan ; Salvador Petit
more authors

High-performance microprocessors, e.g., multithreaded and multicore processors, are being implemented in embedded real-time systems because of the increasing computational requirements. These complex microprocessors have two major drawbacks when they are used for real-time purposes. First, their complexity difficults the calculation of the WCET (worst case execution time). Second, power consumption requirements are much larger, which is a major concern in these systems. In this paper we propose a novel soft power-aware real-time scheduler for a state-of-the-art multicore multithreaded processor, which implements dynamic voltage scaling techniques. The proposed scheduler reduces the energy consumption while satisfying the constraints of soft real-time applications. Different scheduling alternatives have been evaluated, and experimental results show that using a fair scheduling policy, the proposed algorithm provides, on average, energy savings ranging from 34% to 74%.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008