By Topic

A modeling approach for estimating execution time of long-running scientific applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sadjadi, S.M. ; Florida Int. Univ. (FIU), Miami, FL ; Shimizu, S. ; Figueroa, J. ; Rangaswami, R.
more authors

In a grid computing environment, resources are shared among a large number of applications. Brokers and schedulers find matching resources and schedule the execution of the applications by monitoring dynamic resource availability and employing policies such as first- come-first-served and back-filling. To support applications with timeliness requirements in such an environment, brokering and scheduling algorithms must address an additional problem - they must be able to estimate the execution time of the application on the currently available resources. In this paper, we present a modeling approach to estimating the execution time of long-running scientific applications. The modeling approach we propose is generic; models can be constructed by merely observing the application execution "externally" without using intrusive techniques such as code inspection or instrumentation. The model is cross-platform; it enables prediction without the need for the application to be profiled first on the target hardware. To show the feasibility and effectiveness of this approach, we developed a resource usage model that estimates the execution time of a weather forecasting application in a multi-cluster grid computing environment. We validated the model through extensive benchmarking and profiling experiments and observed prediction errors that were within 10% of the measured values. Based on our initial experience, we believe that our approach can be used to model the execution time of other time-sensitive scientific applications; thereby, enabling the development of more intelligent brokering and scheduling algorithms.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008