Cart (Loading....) | Create Account
Close category search window
 

Offline and online master-worker scheduling of concurrent bags-of-tasks on heterogeneous platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Scheduling problems are already difficult on traditional parallel machines. They become extremely challenging on heterogeneous clusters, even when embarrassingly parallel applications are considered. In this paper we deal with the problem of scheduling multiple applications, made of collections of independent and identical tasks, on a heterogeneous master-worker platform. The applications are submitted online, which means that there is no a priori (static) knowledge of the workload distribution at the beginning of the execution. The objective is to minimize the maximum stretch, i.e. the maximum ratio between the actual time an application has spent in the system and the time this application would have spent if executed alone. On the theoretical side, we design an optimal algorithm for the offline version of the problem (when all release dates and application characteristics are known beforehand). We also introduce several heuristics for the general case of online applications. On the practical side, we have conducted extensive simulations and MPI experiments, showing that we are able to deal with very large problem instances in a few seconds. Also, the solution that we compute totally outperforms classical heuristics from the literature, thereby fully assessing the usefulness of our approach.

Published in:

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on

Date of Conference:

14-18 April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.