Cart (Loading....) | Create Account
Close category search window
 

Semantic Coding by Supervised Dimensionality Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kokiopoulou, E. ; Signal Process. Lab., Ecole Polytech. Federate de Lausanne, Lausanne ; Frossard, P.

This paper addresses the problem of representing multimedia information under a compressed form that permits efficient classification. The semantic coding problem starts from a subspace method where dimensionality reduction is formulated as a matrix factorization problem. Data samples are jointly represented in a common subspace extracted from a redundant dictionary of basis functions. We first build on greedy pursuit algorithms for simultaneous sparse approximations to solve the dimensionality reduction problem. The method is extended into a supervised algorithm, which further encourages the class separability in the extraction of the most relevant features. The resulting supervised dimensionality reduction scheme provides an interesting tradeoff between approximation (or compression) and discriminant feature extraction (or classification). The algorithm provides a compressed signal representation that can directly be used for multimedia data mining. The application of the proposed algorithm to image recognition problems further demonstrates classification performances that are competitive with state-of-the-art solutions in handwritten digit or face recognition. Semantic coding certainly represents an interesting solution to the challenging problem of processing huge volumes of multidimensional data in modern multimedia systems, where compressed data have to be processed and analyzed with limited computational complexity.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 5 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.