By Topic

New Approach to Low Contrast Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yingjie Zhang ; Sch. of Mech. Eng., Xi'an Jiaotong Univ., Xi'an ; Liling Ge

Although some breakthrough has been made on image segmentation by using level set based curve propagation techniques, however, these approaches usually are unable to segment exactly the images with low-contrast boundaries or edges. In particular in medical image processing, low-contrast images sometimes are unavoidable due to capturing devices, noise, or partial volume effects. Motivated from the background model on segmentation of moving image sequences, a new approach, in this paper, is proposes to remedy this problem. To reduce the effect of different contrast or intensities, a weight function is defined and applied to each pixel of the image, which trades the effects of geometric and photometric. The weight only relies on the relationship between a point and its neighborhood ones. By means of the help of the weight function, image segmentation may be performed on a weight map so that the side effects resulted from the nonhomogeneity of intensities in the regions are greatly reduced. In contrast with existed approaches, the proposed approach is fast and with very low computational cost. Moreover a high flexibility also is obtained by applying different diffusion functions on computation of the weight. The proposed algorithm has been validated with some numerical results.

Published in:

2008 2nd International Conference on Bioinformatics and Biomedical Engineering

Date of Conference:

16-18 May 2008