By Topic

Feature Selection using Relative Wavelet Energy for Brain-Computer Interface Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhao HaiBin ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang ; Wang Xu ; Wang Hong

The critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer program or wheelchair. In this paper, we used a new method: relative wavelet energy (RWE) for feature selection in BCIs design and linear discriminant analysis (LDA) and support vector machine (SVM) were utilized to classify the pattern of left and right hand movement imagery. Its performance was evaluated by mutual information (MI) using the data set Mb of BCI Competition III. This technology provides another useful way to EEG feature selection in BCIs research.

Published in:

Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on

Date of Conference:

16-18 May 2008