By Topic

Automatic Classification and Characterization of Power Quality Events

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gargoom, A.M. ; Dept. of Electr. & Electron. Eng., Adelaide Univ., Adelaide, SA ; Ertugrul, N. ; Soong, W.L.

This paper presents a new technique for automatic monitoring of power quality events, which is based on the multiresolution S-transform and Parseval's theorem. In the proposed technique, the S-transform is used to produce instantaneous frequency vectors of the signals, and then the energies of these vectors, based on the Parseval's theorem, are utilized for automatically monitoring and classification of power quality events. The advantage of the proposed algorithm is its ability to distinguish different power quality classes easily. In addition, the magnitude, duration, and frequency content of the disturbances can be accurately identified in order to characterize the disturbances. The paper provides the theoretical background of the technique and presents a wide range of analyses to demonstrate its effectiveness.

Published in:

Power Delivery, IEEE Transactions on  (Volume:23 ,  Issue: 4 )