Cart (Loading....) | Create Account
Close category search window
 

Combining Slanted-Frame Classifiers for Improved HMM-Based Arabic Handwriting Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Al-Hajj Mohamad, R. ; Lebanese Int. Univ., Beirut ; Likforman-Sulem, L. ; Mokbel, C.

The problem addressed in this study is the offline recognition of handwritten Arabic city names. The names are assumed to belong to a fixed lexicon of about 1,000 entries. A state-of-the-art classical right-left hidden Markov model (HMM)-based recognizer (reference system) using the sliding window approach is developed. The feature set includes both baseline-independent and baseline-dependent features. The analysis of the errors made by the recognizer shows that the inclination, overlap, and shifted positions of diacritical marks are major sources of errors. In this paper, we propose coping with these problems. Our approach relies on the combination of three homogeneous HMM-based classifiers. All classifiers have the same topology as the reference system and differ only in the orientation of the sliding window. We compare three combination schemes of these classifiers at the decision level. Our reported results on the benchmark IFN/ENIT database of Arabic Tunisian city names give a recognition rate higher than 90 percent accuracy and demonstrate the superiority of the neural network-based combination. Our results also show that the combination of classifiers performs better than a single classifier dealing with slant-corrected images and that the approach is robust for a wide range of orientation angles.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.