By Topic

MIMO Instantaneous Blind Identification Based on Second-Order Temporal Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jakob van de Laar ; Digital Signal Process. Group, Philips Res. Labs., Eindhoven ; Marc Moonen ; Piet C. W. Sommen

Blind identification is a crucial subtask in signal processing problems such as blind signal separation (BSS) and direction-of-arrival (DOA) estimation. This paper presents a procedure for multiple-input multiple-output instantaneous blind identification based on second-order temporal properties of the signals, such as coloredness and nonstationarity. The procedure consists of two stages. First, based on assumptions on the second-order temporal structure (SOTS) of the source and noise signals, and using subspace techniques, the problem is reformulated in a particular way such that each column of the unknown mixing matrix satisfies a system of multivariate homogeneous polynomial equations. Then, this nonlinear system of equations is solved by means of a so-called homotopy method, which provides a general tool for solving (possibly nonexact) systems of nonlinear equations by smoothly deforming the known solutions of a simple start system into the desired solutions of the target system. Our blind identification procedure allows to estimate the mixing matrix for scenarios with more sources than sensors without resorting to sparsity assumptions, something that is often believed to be impossible when using only second-order statistics. In addition, since our algorithm does not require any assumption on the mixing matrix, also mixing matrices that are rank-deficient or even have identical columns can be identified. Finally, we give examples and performance results for speech source signals.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 9 )