By Topic

XFA: Faster Signature Matching with Extended Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Smith, R. ; Univ. of Wisconsin-Madison, Madison, WI ; Estan, C. ; Jha, S.

Automata-based representations and related algorithms have been applied to address several problems in information security, and often the automata had to be augmented with additional information. For example, extended finite-state automata (EFSA) augment finite- state automata (FSA) with variables to track dependencies between arguments of system calls. In this paper, we introduce extended finite automata (XFAs) which augment FSAs with finite scratch memory and instructions to manipulate this memory. Our primary motivation for introducing XFAs is signature matching in Network Intrusion Detection Systems (NIDS). Representing NIDS signatures as deterministic finite-state automata (DFAs) results in very fast signature matching but for several classes of signatures DFAs can blowup in space. Using nondeterministic finite-state automata (NFA) to represent NIDS signatures results in a succinct representation but at the expense of higher time complexity for signature matching. In other words, DFAs are time-efficient but space-inefficient, and NFAs are space- efficient but time-inefficient. In our experiments we have noticed that for a large class of NIDS signatures XFAs have time complexity similar to DFAs and space complexity similar to NFAs. For our test set, XFAs use 10 times less memory than a DFA-based solution, yet achieve 20 times higher matching speeds.

Published in:

Security and Privacy, 2008. SP 2008. IEEE Symposium on

Date of Conference:

18-22 May 2008