Cart (Loading....) | Create Account
Close category search window

Remote Sensing coastal sea level and ocean tide by using reflected GPS L1 and L2 observation for integrated GPS receiver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shen, L.C. ; Earth Res. & Acad. Dept., NCKU, Tainan ; Juang, J.C. ; Tsai, C.L.

In the paper, a new application and development of a highly integrated GPS receiver with reflected GPS signals for ocean state and sea tide will be described. First, both Right Hand Circular Polarization (RHCP) and Left Hand Circular Polarization (LHCP) antennas are employed so that direct and reflected signals can be acquired simultaneously. The direction of arrival of the signals may be along the reflected signal path or even along the line-of-sight of a particular satellite. The goal of the study is to exploit the carrier phase, Doppler shift, reflectivity of L1/L2 S / No signal-to-noise density ratio components of the reflected signals and direct signals for ocean water and coastal ground object detection with surface. The Sea states are predicted by using Doppler shifts due to surface reflection as a moving surface. During the development and test stage, the digital terrain elevation data and satellite's images has been used and mapped with the integrated software. An integer ambiguity algorithm has also been implemented. The precise point positions for RHCP and LHCP antennas are enhanced and processed by repeating instantaneous ionosphere delay correct model with deriving from LI and L2 carrier phase and troposphere estimated parameter model. During the development and test stage, the DTED and visual elements of satellite's images has been used and mapped with the integrated software. According to A GPS radio occultations with CHAMP's technology of remote sensing for ocean two-dimensional tide and flow. The three dimensional ocean tide model is predicted by using Doppler shifts due to surface reflection as a moving surface. The each instantaneous moving surface should be exploited by each reflected GPS carrier phase and reflected point. For remote sensing of ocean, landscape, and stream, the accuracies of each reflected altitude are among 10 cm and 30 cm. The accuracies of each reflected area are converged among 2 cm and 10 cm.

Published in:

OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean

Date of Conference:

8-11 April 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.