By Topic

Wireless Capsule Endoscopy Color Video Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michal¿ Mackiewicz ; Sch. of Comput. Sci., East Anglia Univ., Norwich ; Jeff Berens ; Mark Fisher

This paper describes the use of color image analysis to automatically discriminate between oesophagus, stomach, small intestine, and colon tissue in wireless capsule endoscopy (WCE). WCE uses ldquopill-camrdquo technology to recover color video imagery from the entire gastrointestinal tract. Accurately reviewing and reporting this data is a vital part of the examination, but it is tedious and time consuming. Automatic image analysis tools play an important role in supporting the clinician and speeding up this process. Our approach first divides the WCE image into subimages and rejects all subimages in which tissue is not clearly visible. We then create a feature vector combining color, texture, and motion information of the entire image and valid subimages. Color features are derived from hue saturation histograms, compressed using a hybrid transform, incorporating the discrete cosine transform and principal component analysis. A second feature combining color and texture information is derived using local binary patterns. The video is segmented into meaningful parts using support vector or multivariate Gaussian classifiers built within the framework of a hidden Markov model. We present experimental results that demonstrate the effectiveness of this method.

Published in:

IEEE Transactions on Medical Imaging  (Volume:27 ,  Issue: 12 )