Cart (Loading....) | Create Account
Close category search window
 

High-Speed and Power Efficient Lifting-Based VLSI Architecture for Two-Dimesional Discrete Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeed, I. ; Electr. & Electron. Eng. Dept., Univ. Teknol. PETRONAS, Tronoh ; Agustiawan, H.

Two lifting-based VLSI architectures for 2-D DWTfor lossless 5/3 and lossy 9/7 algorithms were proposed by Ibrahim et al., based on two scan methods, overlapped and nonoverlaped. In the architecture based on the overlapped scan method, the maximum power consumption occurs due to overlap external frame memory access. On the other hand, in the nonoverlapped architecture, the power consumption was reduced to minimum by eliminating the overlapped areas which requires the addition of a line buffer of size N. Furthermore, the performance evaluations by Ibrahim el at., show that those pipelined architectures are optimal in terms of speedup, efficiency and hardware utilization. In this paper, we proposed new architecture, called intermediate architecture, for both 5/3 and 9/7 algorithms, which aim at reducing the power consumption of the overlapped areas, without using the expensive line buffer, to somewhat between the two extreme architectures proposed by Ibrahimt et al.

Published in:

Modeling & Simulation, 2008. AICMS 08. Second Asia International Conference on

Date of Conference:

13-15 May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.