By Topic

Intelligent Web Caching Using Neurocomputing and Particle Swarm Optimization Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sulaiman, S. ; Soft Comput. Res. Group, Univ. Teknol. Malaysia, Skudai ; Shamsuddin, S.M. ; Forkan, F. ; Abraham, A.

Web caching is a technology for improving network traffic on the internet. It is a temporary storage of Web objects (such as HTML documents) for later retrieval. There are three significant advantages to Web caching; reduced bandwidth consumption, reduced server load, and reduced latency. These rewards have made the Web less expensive with better performance. In this paper, an Artificial Intelligence (AI) approach is introduced for Web caching to determine the type of Web request, either to cache or not, and to optimize the performance on Web cache. Two methods are employed in this study; Artificial Neural Network (ANN), and Particle Swarm Optimization (PSO). The experimental results have revealed that some improvements have been accomplished compared to the existing technique in terms of Web cache size.

Published in:

Modeling & Simulation, 2008. AICMS 08. Second Asia International Conference on

Date of Conference:

13-15 May 2008