By Topic

Bayesian Additive Regression Trees-Based Spam Detection for Enhanced Email Privacy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abu-Nimeh, S. ; SMU HACNet Lab., Southern Methodist Univ., Dallas, TX ; Nappa, D. ; Xinlei Wang ; Nair, S.

Spam is considered an invasion of privacy. Its changeable structures and variability raise the need for new spam classification techniques. The present study proposes using Bayesian additive regression trees (BART) for spam classification and evaluates its performance against other classification methods, including logistic regression, support vector machines, classification and regression trees, neural networks, random forests, and naive Bayes. BART in its original form is not designed for such problems, hence we modify BART and make it applicable to classification problems. We evaluate the classifiers using three spam datasets; Ling-Spam, PU1, and Spambase to determine the predictive accuracy and the false positive rate.

Published in:

Availability, Reliability and Security, 2008. ARES 08. Third International Conference on

Date of Conference:

4-7 March 2008