By Topic

Metal Oxide Nanowire and Thin-Film-Based Gas Sensors for Chemical Warfare Simulants Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Ponzoni, A. ; Dept. of Chem. & Phys., Brescia Univ., Brescia ; Baratto, C. ; Bianchi, S. ; Comini, E.
more authors

This work concerns with metal oxide (MOX) gas sensors based on nanowires and thin films. We focus on chemical warfare agents (CWAs) detection to compare these materials from the functional point-of-view. We work with different chemicals including simulants for Sarin nerve agents, vescicant gases, cyanide agents, and analytes such as ethanol, acetone, ammonia, and carbon monoxide that can be produced by everyday activities causing false alarms. Explorative data analysis has been used to demonstrate the different sensing performances of nanowires and thin films. Within the chosen application, our analysis reveal that the introduction of nanowires inside the array composed by thin films can improve its sensing capability. Cyanide simulants have been detected at concentrations close to 1 ppm, lower than the Immediately Dangerous for Life and Health (IDLH) value of the respective warfare agent. Higher sensitivity has been obtained to simulants for Sarin and vescicant gases, which have been detected at concentrations close or even lower than 100 ppb. Results demonstrate the suitability of the proposed array to selectively detect CWA simulants with respect to some compounds produced by everyday activities.

Published in:

Sensors Journal, IEEE  (Volume:8 ,  Issue: 6 )