By Topic

Towards De Novo Design of Deoxyribozyme Biosensors for GMO Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Elebeoba E. May ; Dept. of Comput. Biol., Sandia Nat. Labs., Albuquerque, NM ; Patricia L. Dolan ; Paul S. Crozier ; Susan Brozik
more authors

Hybrid systems that provide a seamless interface between nanoscale molecular events and microsystem technologies enable the development of complex biological sensor systems that not only detect biomolecular threats, but also are able to determine and execute a programmed response to such threats. The challenge is to move beyond the current paradigm of compartmentalizing detection, analysis, and interpretation into separate steps. We present methods that will enable the de novo design and development of customizable biosensors that can exploit deoxyribozyme computing (Stojanovic and Stefanovic, 2003) to concurrently perform in vitro target detection, genetically modified organism detection, and classification.

Published in:

IEEE Sensors Journal  (Volume:8 ,  Issue: 6 )