By Topic

Dissociation Chemistry of Gas Molecules on Carbon Nanotubes—Applications to Chemical Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Govind, N. ; Pacific Northwest Nat. Lab., Richland, WA ; Andzelm, J. ; Maiti, Amitesh

It is well known in the literature that carbon nanotubes (CNTs) interact weakly with many gas molecules like H2O, O2, CO, NH3, H2 and NO2, to name a few. Exposure to NO2, O2 and NH3 significantly affects the electrical conductance of a single wall nanotube (SWNT). These can be explained using a simple charge transfer picture, which results in the observed changes in the hole conduction of the tubes. It is also known that pure SWNTs only weakly interact with these molecules. We have recently investigated (Andzelm , 2006) how common defects in CNTs [Stone-Wales (SW), monovacancy, and interstitial] influence the chemisorption of NH3. This paper is a continuation of our previous work. Here, we further investigate, via density functional theory (DFT) calculations, the effects of SW defects on the adsorption/dissociation of and O2 and H2O. We also study the diffusion of adsorbed oxygen atoms on the nanotube surface in the vicinity of the SW defect, as well as the dissociation of in the presence of adsorbed oxygen atoms.

Published in:

Sensors Journal, IEEE  (Volume:8 ,  Issue: 6 )