By Topic

Development and Experimental Evaluation of a Slip Angle Estimator for Vehicle Stability Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Damrongrit Piyabongkarn ; Innovation Center, Eaton Corp., Eden Prairie, MN ; Rajesh Rajamani ; John A. Grogg ; Jae Y. Lew

Real-time knowledge of the slip angle in a vehicle is useful in many active vehicle safety applications, including yaw stability control, rollover prevention, and lane departure avoidance. Sensors to measure slip angle, including two-antenna GPS systems and optical sensors, are too expensive for ordinary automotive applications. This paper develops a real-time algorithm for estimation of slip angle using inexpensive sensors normally available for yaw stability control applications. The algorithm utilizes a combination of model-based estimation and kinematics-based estimation. Compared with previously published results on slip angle estimation, this present paper compensates for the presence of road bank angle and variations in tire-road characteristics. The developed algorithm is evaluated through experimental tests on a Volvo XC90 sport utility vehicle. Detailed experimental results show that the developed system can reliably estimate slip angle for a variety of test maneuvers.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:17 ,  Issue: 1 )