By Topic

A Self-Evolving Interval Type-2 Fuzzy Neural Network With Online Structure and Parameter Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chia-Feng Juang ; Dept. of Electr. Eng., Nat. Chung-Hsing Univ., Taichung ; Yu-Wei Tsao

This paper proposes a self-evolving interval type-2 fuzzy neural network (SEIT2FNN) with online structure and parameter learning. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the fuzzy rules are of the Takagi-Sugeno-Kang (TSK) type. The initial rule base in the SEIT2FNN is empty, and the online clustering method is proposed to generate fuzzy rules that flexibly partition the input space. To avoid generating highly overlapping fuzzy sets in each input variable, an efficient fuzzy set reduction method is also proposed. This method independently determines whether a corresponding fuzzy set should be generated in each input variable when a new fuzzy rule is generated. For parameter learning, the consequent part parameters are tuned by the rule-ordered Kalman filter algorithm for high-accuracy learning performance. Detailed learning equations on applying the rule-ordered Kalman filter algorithm to the SEIT2FNN consequent part learning, with rules being generated online, are derived. The antecedent part parameters are learned by gradient descent algorithms. The SEIT2FNN is applied to simulations on nonlinear plant modeling, adaptive noise cancellation, and chaotic signal prediction. Comparisons with other type-1 and type-2 fuzzy systems in these examples verify the performance of the SEIT2FNN.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 6 )