By Topic

Probability Models for the Splitting Algorithm in Wireless Access Networks with Multipacket Reception and Finite Nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rung-Hung Gau ; National Sun Yat-Sen University, Kaohsiung ; Kuan-Mei Chen

In this paper, we propose an analytical approach for performance evaluation of the classic tree/stack splitting algorithm in an interference-dominating wireless access network with random traffic and finite nodes. In an interference-dominating wireless access network, a receiver could simultaneously receive multiple packets from a variety of transmitters, as long as the signal-to-interference-plus-noise ratio exceeds a predetermined threshold. We use discrete-time Markov chains and regenerative processes to derive the throughput curve, the packet blocking probability, the average system size, and the average packet delay. We show that the exact performance of the splitting algorithm depends on the total number of nodes in the network. We verify our numerical results by rigorous mathematical proof and computer simulations.

Published in:

IEEE Transactions on Mobile Computing  (Volume:7 ,  Issue: 12 )