By Topic

PReSENt: A Collaboration Framework for Resource Sharing in Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hwangnam Kim ; Sch. of Electr. Eng., Korea Univ., Seoul ; E-yong Kim

Many protocol particulars developed for the wireless mesh networks, such as multi-path routing, channel assignment, topology control, assume that a network-wide collaboration is available to establish connections to the network outside. However, the collaboration can be easily discouraged in the presence of selfish behaviors, referred to as free-riding. In this paper, we propose a framework, PReSENt, to promote and make more secure the practices of collaboration among nodes by securing a compensation to the collaboration. When the PReSENt is enabled in wireless mesh networks, a node accumulates credits, an amount quantifying its resource provision when it provides its resource for other nodes. The nodes consuming the resource publish rewards, an amount quantifying their resource usage. The credits are used to guarantee the resource sharing for the provider from the customers in the future, whose amount is proportional to its relative contribution to the network-wide collaboration. The rewards are used to validate their corresponding credits in order to prevent false accumulations of the credits in selfish nodes. We formally define the underlying security model of the PReSENt and prove that the PReSENt is secure in the random oracle model. We then implement the PReSENt in J-Sim to illustrate its operational behaviors with respect to correct and secure resource sharing.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:20 ,  Issue: 3 )