By Topic

On a decoding algorithm for codes on maximal curves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pellikaan, R. ; Dept. of Math. & Comput. Sci., Tech. Univ. of Eindhoven, Netherlands

A decoding algorithm for algebraic geometric codes that was given by A.N. Skorobogatov and S.G. Vladut (preprint, Inst. Problems of Information Transmission, 1988) is considered. The author gives a modified algorithm, with improved performance, which he obtains by applying the above algorithm a number of times in parallel. He proves the existence of the decoding algorithm on maximal curves by showing the existence of certain divisors. However, he has so far been unable to give an efficient procedure of finding these divisors

Published in:

Information Theory, IEEE Transactions on  (Volume:35 ,  Issue: 6 )