By Topic

Analogy-X: Providing Statistical Inference to Analogy-Based Software Cost Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Keung, J.W. ; ESE/NICTA, Sydney, NSW ; Kitchenham, B.A. ; Jeffery, D.R.

Data-intensive analogy has been proposed as a means of software cost estimation as an alternative to other data intensive methods such as linear regression. Unfortunately, there are drawbacks to the method. There is no mechanism to assess its appropriateness for a specific dataset. In addition, heuristic algorithms are necessary to select the best set of variables and identify abnormal project cases. We introduce a solution to these problems based upon the use of the Mantel correlation randomization test called Analogy-X. We use the strength of correlation between the distance matrix of project features and the distance matrix of known effort values of the dataset. The method is demonstrated using the Desharnais dataset and two random datasets, showing (1) the use of Mantel's correlation to identify whether analogy is appropriate, (2) a stepwise procedure for feature selection, as well as (3) the use of a leverage statistic for sensitivity analysis that detects abnormal data points. Analogy-X, thus, provides a sound statistical basis for analogy, removes the need for heuristic search and greatly improves its algorithmic performance.

Published in:

Software Engineering, IEEE Transactions on  (Volume:34 ,  Issue: 4 )