Cart (Loading....) | Create Account
Close category search window
 

Sign Language Recognition by Combining Statistical DTW and Independent Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lichtenauer, J.F. ; Inf. & Commun. Theor. Group, Delft Univ. of Technol., Delft ; Hendriks, E.A. ; Reinders, M.J.T.

To recognize speech, handwriting, or sign language, many hybrid approaches have been proposed that combine dynamic time warping (DTW) or hidden Markov models (HMMs) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modeling demands. To overcome these restrictions, we propose using statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed - combined discriminative feature detectors (CDFDs) and quadratic classification on DF Fisher mapping (Q-DFFM) - both using a selection of discriminative features (DFs), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that, also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.