By Topic

Joint Data Detection and Channel Tracking for OFDM Systems With Phase Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stefanatos, S. ; Dept. of Phys., Nat. & Kapodistrian Univ. of Athens, Athens ; Katsaggelos, A.K.

This paper addresses the problem of data detection in orthogonal frequency division multiplexing (OFDM) systems operating under a time-varying multipath fading channel. Optimal detection in such a scenario is infeasible, which makes the introduction of approximations necessary. The typical joint data-channel estimators are decision directed, that is, assume perfect past data decisions. However, their performance is subject to error propagation phenomena. The variational Bayes method is employed here, which approximates the joint data and channel distribution as a separable one, greatly simplifying the problem. The data detection part of the resulting algorithm provides soft data estimates that are used for channel tracking. The channel itself is modeled as an autoregressive process allowing for a Kalman-like tracking algorithm. According to the developed algorithm, both data and channel estimates are exchanged and updated in an iterative manner. The performance of the proposed algorithm is evaluated by simulations. Furthermore, since OFDM is extremely sensitive to the presence of phase noise, the algorithm is extended to operate under severe phase noise conditions, with moderate performance degradation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 9 )