By Topic

Robust Face Tracking via Collaboration of Generic and Specific Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peng Wang ; Siemens Corp. Res., Princeton, NJ ; Qiang Ji

Significant appearance changes of objects under different orientations could cause loss of tracking, ldquodrifting.rdquo In this paper, we present a collaborative tracking framework to robustly track faces under large pose and expression changes and to learn their appearance models online. The collaborative tracking framework probabilistically combines measurements from an offline-trained generic face model with measurements from online-learned specific face appearance models in a dynamic Bayesian network. In this framework, generic face models provide the knowledge of the whole face class, while specific face models provide information on individual faces being tracked. Their combination, therefore, provides robust measurements for multiview face tracking. We introduce a mixture of probabilistic principal component analysis (MPPCA) model to represent the appearance of a specific face under multiple views, and we also present an online EM algorithm to incrementally update the MPPCA model using tracking results. Experimental results demonstrate that the collaborative tracking and online learning methods can handle large pose changes and are robust to distractions from the background.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 7 )