By Topic

Circuit Modeling and Performance Analysis of Multi-Walled Carbon Nanotube Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hong Li ; Center for Microwave & RF Technol., Shanghai Jiao Tong Univ., Shanghai ; Wen-Yan Yin ; Kaustav Banerjee ; Jun-Fa Mao

Metallic carbon nanotubes (CNTs) have received much attention for their unique characteristics as a possible alternative to Cu interconnects in future ICs. Until this date, while almost all fabrication efforts have been directed toward multiwalled CNT (MWCNT) interconnects, there is a lack of MWCNT modeling work. This paper presents, for the first time, a detailed investigation of MWCNT-based interconnect performance. A compact equivalent circuit model of MWCNTs is presented for the first time, and the performance of MWCNT interconnects is evaluated and compared against traditional Cu interconnects, as well as Single-Walled CNT (SWCNT)-based interconnects, at different interconnect levels (local, intermediate, and global) for future technology nodes. It is shown that at the intermediate and global levels, MWCNT interconnects can achieve smaller signal delay than that of Cu interconnects, and the improvements become more significant with technology scaling and increasing wire lengths. At 1000- global or 500- intermediate level interconnects, the delay of MWCNT interconnects can reach as low as 15% of Cu interconnect delay. It is also shown that in order for SWCNT bundles to outperform MWCNT interconnects, dense and high metallic-fraction SWCNT bundles are necessary. On the other hand, since MWCNTs are easier to fabricate with less concern about the chirality and density control, they can be attractive for immediate use as horizontal wires in VLSI, including local, intermediate, and global level interconnects.

Published in:

IEEE Transactions on Electron Devices  (Volume:55 ,  Issue: 6 )