By Topic

Inverse Algorithms for the GPR Assessment of Concrete Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper investigates the characterization of inclusions in concrete structures, including the number of inclusions, their geometries, and electromagnetic properties. To solve this problem, a two phase algorithm that combines matched-filter-based reverse-time (MFBRT) migration algorithm with the particle swarm optimization (PSO) is employed. The first phase runs the MFBRT that can, robustly, define the number of inclusions and their centers; however, it cannot define the inclusion geometry and electromagnetic properties. Given the results obtained in the first phase, the PSO is launched in the second phase, in a parametric approach, to define the radii of the inclusions and their properties. Three types of inclusions were considered, water, air, and conductor. Results considering a nonhomogenous host medium having from one to three inclusions are presented showing the effectiveness of the proposed approach.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 6 )