By Topic

Dynamical Models for Eddy Current in Ferromagnetic Cores Introduced in an FE-Tuned Magnetic Equivalent Circuit of an Electromagnetic Relay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Electromagnetic relay modeling is elaborated using a magnetic equivalent circuit (MEC). The lumped parameters of the MEC are fitted with respect to 3-D finite-element simulation by using classical optimization algorithms. An accurate dynamic material law has to be taken into account in the modeling, considering the massive core of the circuit. Two accurate dynamical models for representing eddy currents are studied. The simulation of the relay is carried out for several excitation frequencies. A comparison between measurements and simulated quantities is provided.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 6 )