Cart (Loading....) | Create Account
Close category search window

Robust Optimization in HTS Cable Based on Design for Six Sigma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xinying Liu ; State Key Lab. of Electr. Insulation & Power Equip., Xi''an Jiaotong Univ., Xi''an ; Shuhong Wang ; Jie Qiu ; Jian Guo Zhu
more authors

The nonuniform ac current distribution among the multilayer conductors in a high-temperature superconducting (HTS) cable reduces the current capacity and increases the ac loss. Various numerical simulation techniques and optimization methods have been applied in structural optimization of HTS cables. While the existence of fluctuation in design variables or operation conditions has a great influence on the cable quality, in order to eliminate the effects of parameter perturbations in design and to improve the design efficiency, a robust optimization method based on design for six sigma (DFSS) is presented in this paper. The optimization results show that the proposed optimization procedure can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality, comparing with those by using the particle swarm optimization.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.