System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Novel Solution to Eddy-Current Heating of Ferromagnetic Bodies With Nonlinear {mbi B}\hbox {\textendash }{mbi H} Characteristic Dependent on Temperature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

An efficient solution is presented for coupled nonlinear eddy currents-thermal diffusion problems. Applying the fixed-point polarization method to the nonlinear eddy-current field problem, with the magnetization dependent on magnetic induction and on temperature, allows the field computation to be performed for each harmonic separately. Since the fictitious permeability can be chosen to be everywhere that of free space, the matrices of the linear systems to be solved at each iteration remain unchanged even when the nonlinear characteristic changes with the temperature. A simple integral equation is used to compute the eddy currents, the inversion of the matrices corresponding to the harmonics being performed only once, before starting the iterative process. The heat conduction-diffusion equation is solved at each time step by the finite-element method. Three illustrative examples are also presented.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 6 )