Cart (Loading....) | Create Account
Close category search window

Exact and Approximate Algorithms for the Optimization of Area and Delay in Multiple Constant Multiplications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Aksoy, L. ; Div. of Circuits & Syst., Istanbul Tech. Univ., Istanbul ; da Costa, E. ; Flores, P. ; Monteiro, J.

The main contribution of this paper is an exact common subexpression elimination algorithm for the optimum sharing of partial terms in multiple constant multiplications (MCMs). We model this problem as a Boolean network that covers all possible partial terms that may be used to generate the set of coefficients in the MCM instance. We cast this problem into a 0-1 integer linear programming (ILP) by requiring that the single output of this network is asserted while minimizing the number of gates representing operations in the MCM implementation that evaluate to one. A satisfiability (SAT)-based 0-1 ILP solver is used to obtain the exact solution. We argue that for many real problems, the size of the problem is within the capabilities of current SAT solvers. Because performance is often a primary design parameter, we describe how this algorithm can be modified to target the minimum area solution under a user-specified delay constraint. Additionally, we propose an approximate algorithm based on the exact approach with extremely competitive results. We have applied these algorithms on the design of digital filters and present a comprehensive set of results that evaluate ours and existing approximation schemes against exact solutions under different number representations and using different SAT solvers.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.