By Topic

Oxygen Spectroscopy Laser Sounding Instrument for Remote Sensing of Atmospheric Pressure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Stephen, M.A. ; NASA - Goddard Space Flight Center, Greenbelt, MD ; Jianping Mao ; Abshire, J.B. ; Kawa, S.R.
more authors

We report on the progress of an oxygen spectroscopy laser sounding instrument designed as a calibration channel for a carbon dioxide (CO2) laser sounding instrument. We have developed a pulsed, frequency-doubled, fiber laser transmitter for use in an oxygen instrument. The instrument concept uses the pressure broadening of spectroscopic lines of the diatomic oxygen A-band to deduce atmospheric pressure. There are many uses for this measurement but we are developing it primarily to make a measurement of the dry mixing ratio of CO2. The CO2 measurement can be affected by changes in atmospheric properties such as humidity, temperature and pressure. To remove these variances requires measuring a stable, well-mixed gas like oxygen. We will report on the basic theory behind the instrument, measurements made at a test site at Goddard, review the current state of the instrument technologies and the necessary steps to bring them to space readiness, and review the current state of the instrument development.

Published in:

Aerospace Conference, 2008 IEEE

Date of Conference:

1-8 March 2008